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Abstract

The transient dynamic coupled!thermoelasticity problem of a half!space under the action of a buried
thermal:mechanical source is analyzed here[ This situation aims primarily at modeling underground
explosions and impulsively applied heat loadings near a boundary[ Also\ the present basic analysis may
yield the necessary _eld quantities required to apply the Boundary Element Method in more complicated
thermoelastodynamic problems involving half!plane domains[ A material response for the half!space pre!
dicted by Biot|s thermoelasticity theory is assumed in an e}ort to give a formulation of the problem as
general as possible "within the con_nes of a linear theory#[ The loading consists of a concentrated thermal
source and a concentrated force "mechanical source# having arbitrary direction with respect to the half!
plane surface[ Both thermal and mechanical line sources are situated at the same location in a _xed
distance from the surface[ Plane!strain conditions are assumed to prevail[ Our problem can be viewed as a
generalization of the classical NakanoÐLapwoodÐGarvin problem and its recent versions due to Payton
"0857# and Tsai and Ma "0880#[ The initial:boundary value problem is attacked with one! and two!sided
Laplace transforms to suppress\ respectively\ the time variable and the horizontal space variable[ A 8×8
system of linear equations arises in the double transformed domain and its exact solution is obtained by
employing a program of symbolic manipulations[ From this solution the two!sided Laplace transform
inversion is then obtained exactly through contour integration[ The one!sided Laplace transform inversion
for the vertical displacement at the surface is obtained here asymptotically for long times and numerically
for short times[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

The present work is concerned with the analysis of the problem of transient coupled thermo!
elastodynamic disturbances in a half!space due to the impulsive application of thermal and
mechanical sources in the interior of the body[ The thermal source is a buried concentrated heat
~ux and the mechanical source is a buried concentrated loading having di}erent horizontal and
vertical components[ This situation has relevance to the case of underground nuclear explosions
"Bullen and Bolt\ 0876# and to the case of sudden heat loadings by impulsive electromagnetic
radiation "Morland\ 0857^ Sve and Miklowitz\ 0862^ Hata\ 0884#[

Motions due to underground explosions or suddenly occurring earthquakes are usually modeled
as elastodynamic radiation patterns due to a buried source in a half space "see e[g[ Bullen and
Bolt\ 0876^ Brady and Brown\ 0889#[ The _rst theoretical investigation of this type is due to
Nakano "0814# who presented a time!harmonic steady state analysis for a buried line source
emitting dilatational waves in an elastic half!space[ Lapwood "0838# investigated the transient
version of Nakano|s problem through an approximate analysis which is valid only when the depths
of source and point of reception were small compared with their distance apart[ The latter problem
was solved in an exact manner by Garvin "0845#\ who employed Cagniard|s "0828# technique to
invert the double transforms\ whereas the more general problem involving the transient action of
a buried line force of arbitrary direction was considered by Payton "0857# and in full detail by Tsai
and Ma "0880#[ The respective three!dimensional axisymmetric situation of a buried vertical point
force in an elastic half!space was studied by Pekeris "0844# and Pekeris and Lifson "0846#[

Most of the investigations mentioned above are considered classical work in the area of wave
propagation in solids and are reviewed with much detail in the well!known treatises of Fung
"0854#\ Eringen and Suhubi "0864#\ and Miklowitz "0867#[ Complementary work on the issue of
suddenly occurring earthquakes has been presented by Knopo} and Gilbert "0859# and Burridge
and Knopo} "0853# who established convenient body force equivalents for seismic dislocations[
Finally\ the related equilibrium "static# plane!strain problem of a line buried force in an elastic
half!plane was considered by Melan "0821# and Telles and Brebbia "0870#[ The latter work
demonstrates also that an e.cient Boundary!Element formulation for half!plane problems "e[g[
half!planes with cavities# can be obtained by employing the stress and displacement _eld due to
the buried source[

In the present study\ we deal with a related but more general problem than those of NakanoÐ
LapwoodÐGarvin and PaytonÐTsaiÐMa[ The transient action of a buried line thermal and mech!
anical source in a half!space of a thermoelastic material is considered[ As Fig[ 0 depicts\ a pair of
vertical and horizontal forces and a concentrated heat ~ux act at the point "x � 9\ y � 9# of the
half!plane which lies at a depth H from the surface[ The loadings may have an arbitrary time
dependence "our analysis can deal with such cases#\ but here only the case of a Dirac delta variation
has been worked out[ Biot|s "0845# coupled thermoelastodynamic theory "see also Lessen\ 0845^
Chadwick\ 0859^ Nowacki\ 0860^ Carlson\ 0861# was employed and integral transforms were used
to attack the governing equations and boundary conditions[ To deal with the source terms without
considering them in the pertinent _eld equations\ we adopted a procedure introduced by Pekeris
"0844# and also followed by Payton "0872# and Vardoulakis and Harnpattanapanich "0875#[
According to this the half!plane is separated into two regions "a half!plane region extending below
the source level and an in_nite!strip region extending between the source level and the surface of
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Fig[ 0[ Thermoelastic half!space acted upon by buried thermal and mechanical line sources at "x � 9\ y � 9#[

the original half!plane# with di}erent representations of transformed displacements\ stresses and
temperature[ Then\ the solution in the double transform domain is obtained by enforcing continuity
and discontinuity conditions along the source level[ Here\ representative numerical results were
derived for the vertical displacement at the surface clearly showing the dominance of thermoelastic
Rayleigh disturbances for long times[ From the present basic analysis\ more extensive numerical
results may follow through contour integration "to invert the two!sided Laplace transform# and
numerical inversion of the one!sided Laplace transform[ A similar procedure was recently presented
by Georgiadis et al[ "0887# for a thermal fracture problem[

Finally\ related work dealing with fundamental "source# solutions of dynamic coupled ther!
moelasticity which involves\ however\ in_nite domains "i[e[ full spaces# was carried out by Manolis
and Beskos "0878# and Wang and Dhaliwal "0882#[ Of course\ the latter problems are much simpler
than the present one but these are still very useful in formulating Boundary Integral Equations\
which may solve practical problems[ Also\ the e}ect of non!planarity of half!space surfaces in
similar problems was studied recently by Brock et al[ "0885#[ As regards now the mathematically
similar area of poroelasticity of ~uid!saturated media\ work related to the present study was carried
out by Vardoulakis and Harnpattanapanich "0875# and Harnpattanapanich and Vardoulakis
"0876#\ who dealt with coupled inertialess problems of half!planes and layers under buried or
surface loadings[ In the latter work\ the absence of inertia terms renders the problem mathematically
di}erent than the present one[ We would like also to mention that in thermal!shock problems the
importance of inertia "dynamic# e}ects was revealed in the studies of Sternberg and Chakravorty
"0848a\ b# and the importance of both inertia and thermal!coupling e}ects in the studies of
Hetnarski "0850#\ Boley and Tolins "0851# and Francis "0861#[

1[ Problem statement

Consider a body occupying the half!plane "−� ³ x ³ �\ −H ³ y ³ �# under plane!strain
conditions[ The body is of quiescent past and at uniform initial temperature "see Fig[ 0#[ At time
t � 9\ this body is acted upon by thermal and mechanical line sources at the origin "x � 9\ y � 9#\
which is situated at a depth H below the surface[ The concentrated thermal loading may have an
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arbitrary time dependence `Q"t# and has an intensity KQ\ where K is the thermal conductivity with
dimensions of "power# "unit length#−0 ">C#−0\ >C means degrees of temperature and Q is a
multiplier expressed in ">C# "dimensions of `Q"t##−0[ The concentrated mechanical loading has a
horizontal component S = `S"t# and a vertical component P = `P"t#\ where `S"t# and `P"t# may be
arbitrary functions of time and the intensities S and P are expressed in\ respectively\ "force#
"unit length#−0 "dimensions of `S"t##−0 and "force# "unit length#−0 "dimensions of `P"t##−0[ Then\
according to the linear isotropic coupled thermoelastodynamic theory of Biot "0845# "see also e[g[
Lessen\ 0845^ Carlson\ 0861# the governing equations for the plane problem described above are
as follows

s � m"9u¦u9#¦l"9 = u#0−k9"2l¦1m#u0\ "0#

q � −K9u\ "1#

m91u¦"l¦m#9"9 = u#−k9"2l¦1m#9u¦fd"x# = d"y# � r
11u

1t1
\ "2#

K91u−rcv

1u

1t
−k9"2l¦1m#T9

1"9 = u#
1t

¦KQ = `Q"t# = d"x# = d"y# � 9\ "3#

where "0# is the NeumannÐDuhamel relation\ "1# is the heat conduction equation\ "2# is the
displacement!temperature equation of motion\ and "3# is the coupled heat equation[ Also\ in the
above equations which hold in the "x\ y#!plane\ s is the stress tensor with components "sxx\ syy\ sxy#\
u is the displacement vector with components "ux\ uy#\ u � T−T9 is the change in temperature\ T
is the current temperature\ T9 is the initial temperature\ q is the heat!~ux vector whose components
"qx\ qy# have dimensions of "power# "unit area#−0\ "l\ m# are the Lame� constants\ k9 is the coe.cient
of linear expansion expressed in ">C#−0\ r is the mass density\ cv is the speci_c heat at constant
deformation expressed in "energy# "unit mass#−0 ">C#−0\ f is a vector having S = `S"t# as its x!
component and P = `P"t# as its y!component\ d" # denotes the Dirac delta distribution with dimen!
sions " #−0\ 0 is the identity tensor\ 9 is the gradient operator\ and 91 �"11:1x1#¦"11:1y1# is the
Laplace operator[ All _eld quantities above are functions of "x\ y\ t#[

In addition\ zero initial conditions are taken\ i[e[

u � 1u:1t � u � 9 for t ¾ 9 in "−� ³ x ³ �\ −H ³ y ³ �#\ "4#

and we also assume that the half!plane surface y � −H is traction free and insulated "i[e[ no heat
is conducted through the half!plane surface and air#[

The problem statement is completed now by writing the pertinent _niteness conditions at remote
regions "see e[g[ Du} and Naylor\ 0855#

ux\uy ½
Uðt−"r:V#Ł

ðt1−"r:V#1Ł0:1
for r : �\ "5a#

u ½
exp"−r1:3kt#

t
for r : �\ "5b#

where Uð Ł is the Heaviside unit!step function\ r �"x1¦y1#0:1\ V is a velocity!like real and positive
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constant\ and k � K:rcv is the di}usivity[ Thus\ even in the case of heat!conduction\ where
temperature signals travel at an in_nite speed\ the _eld at in_nity remains bounded[

Then\ by following the method of Pekeris "0844# explained in the Introduction\ we introduce an
imaginary line along "−� ³ x ³ �\ y � 9# separating the original half!plane into the half!plane
"−� ³ x ³ �\ 9 ³ y ³ �# "Region {0| in Fig[ 0# and the strip "−� ³ x ³ �\ −H ³ y ³ 9#
"Region {1| in Fig[ 0#\ and consider pertinent continuity and discontinuity conditions at y � 9
along with the "standard# boundary conditions at y � −H

ux0"x\ 9\ t# � ux1"x\ 9\ t# for −� ³ x ³ �\ "6a#

uy0"x\ 9\ t# � uy1"x\ 9\ t# for −� ³ x ³ �\ "6b#

u0"x\ 9\ t# � u1"x\ 9\ t# for −� ³ x ³ �\ "6c#

syy0"x\ 9\ t#−syy1"x\ 9\ t# � P = d"x# = `P"t# for −� ³ x ³ �\ "6d#

sxy0"x\ 9\ t#−sxy1"x\ 9\ t# � S = d"x# = `S"t# for −� ³ x ³ �\ "6e#

1u0"x\ 9\ t#
1y

−
1u1"x\ 9\ t#

1y
� Q = d"x# = `Q"t# for −� ³ x ³ �\ "6f#

syy"x\ −H\ t# � 9 for −� ³ x ³ �\ "7a#

sxy"x\ −H\ t# � 9 for −� ³ x ³ �\ "7b#

1u"x\ −H\ t#
1y

� 9 for −� ³ x ³ �\ "7c#

where the subscript {0| or {1| in a _eld quantity means that the line y � 9 is approached as y : 9¦

or y : 9−\ respectively[ Introducing eqns "6# allows indeed to formulate the initial:boundary value
problem without the explicit consideration of the source terms fd"x# =d"y# and KQ =`Q"t# =d"x# =d"y#
in the _eld eqns "2# and "3#\ respectively\ and therefore\ leads to a considerable reduction of
algebraic manipulations[

In this way\ the original problem "0#Ð"5# and "7# can alternatively be described by "0#\ "1#\ "4#Ð
"7# along with the following _eld equations "the latter being with no source terms#

91ux¦
1ð"m1−0#D¦kuŁ

1x
−

0

V1
1

11ux

1t1
� 9\ "8a#

91uy¦
1ð"m1−0#D¦kuŁ

1y
−

0

V1
1

11uy

1t1
� 9\ "8b#

K
m

91u−
cv

V1
1

1u

1t
¦kT9

1D
1t

� 9\ "09#

where "8# and "09# follow directly from "2# and "3# by introducing the shear!wave velocity
V1 � "m:r#0:1\ the dilatation D �"1ux:1x#¦"1uy:1y# and the normalized coe.cient of linear expan!
sion k � −k9"2l¦1m#:m � k9"3−2m1# ³ 9\ with m � V0:V1 × 0 and V0 � ð"l¦1m#:rŁ0:1 being the
longitudinal wave velocity in the non!thermal "purely elastic# theory[

Finally\ for convenience in the subsequent analysis\ the time is normalized by introducing the
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new variable s � V0t\ and also the arbitrary functions of time dependence of the sources `Q"t#\
`S"t# and `P"t# are replaced by the Dirac d"t# so that any response due to a general time dependence
of loading to be obtained from the present solution through convolution[ In addition\ when the
double transformed solution "corresponding to the d"t#!loading# is obtained at a later stage\ we
shall identify the pertinent alterations needed to provide the solution due to an arbitrary `j"t#!
loading "with j � Q\ S\ P#[

2[ Integral!transform analysis

The problem will be attacked by means of one! and two!sided Laplace transforms[ The appro!
priate de_nitions are as follows

F"x\ y\ p# � g
�

9

8"x\ y\ s# = e−ps ds\ 8"x\ y\ s# �"0:1pi# gG0

F"x\ y\ p# = eps dp\ "00a\b#

F�"q\ y\ p# � g
�

−�

F"x\ y\ p# = e−pqx dx\ F"x\ y\ p# �"p:1pi# gG1

F�"q\ y\ p# = epqx dq\ "01a\b#

where for the one!sided direct transform we save a capital letter and the two!sided direct transform
is denoted by an asterisk[ We also notice that "van der Pol and Bremmer\ 0849#] "0# Because of
the identity theorem for analytic functions it is su.cient to view F"x\ y\ p# as a function of a real
variable p over some segment of the real axis in the half!plane of analyticity[ Once F"x\ y\ p# is
determined as an explicit function of p in the course of solving the transformed di}erential
equations\ the de_nition of F"x\ y\ p# can be extended to the whole complex p!plane\ except for
isolated singular points\ through analytic continuation[ "1# The variable q is complex[ "2# The
integration paths G0 and G1 are lines parallel to the imaginary axis in the p! and q!plane\ respectively\
and they lie within the regions of analyticity[

Applying now "00a# and "01a# to the governing eqns "0#\ "8# and "09#\ and considering "4# and
"5# yields the following general expressions for the transformed temperature change\ displacements
and stresses which are di}erent in the regions {0| and {1|[

"a# Region {0| "9 ³ y ³ �#]
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H

H
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k

k
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m
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H

H
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"b# Region {1| "−H ³ y ³ 9#]
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X3 epa¦y

X4 e−pa¦y

X5 epa−y

X6 e−pa−y

X7 epby

X8 e−pby

L

H

H

H

H

H

H

H

H

l

\ "03#

where it should be noticed that the solution "02# is bounded at y : � coping thus with the
restrictions in "5#\ whereas such a constraint need not be imposed on the solution "03#[ In the
above equations\ the yet unknown X0\ X1\ [ [ [ \ X8 are arbitrary functions of "q\ p# which will be
determined from conditions "6# and "7# in our particular problem[ Also\ the following de_nitions
were employed

a¦ 0 a¦"q\ p# �"m1
¦−q1#0:1\ a− 0 a−"q\ p# �"m1

−−q#0:1\ b 0 b"q# �"m1−q1#0:1\

"04a\b\c#

m¦ �
0
1 $00¦

0

"hp#0:11
1

¦
o

hp%
0:1

¦
0
1 $00−

0

"hp#0:11
1

¦
o

hp%
0:1

\ "05a#

m− �
0
1 $00¦

0

"hp#0:11
1

¦
o

hp%
0:1

−
0
1 $00−

0

"hp#0:11
1

¦
o

hp%
0:1

\ "05b#

M¦ � m1
¦−0\ M− � m1

−−0\ "06a\b#

T¦ � 1a1
¦−m1\ T− � 1a1

−−m1\ T � 1b1−m1 0 m1−1q1\ "07a\b\c#

with o �"T9:cv#"kV1:m#1 being the dimensionless coupling coe.cient and h �"KV1:mmcv# being the
thermoelastic length\ both being introduced by Chadwick "0859#[ He also provides numerical
values for o and h corresponding to several engineering materials which generally show that
o � O"09−1# and h � O"09−09# m[ However\ it should be mentioned at this point that Chadwick
"0859# has provided a di}erent approach "than the one presented here# based on a displacement!
potential formulation[ In addition\ pertinent branch cuts are introduced in the complex q!plane
for the functions a¦"q\ p#\ a−"q\ p# and b"q# in the manner shown for instance for b"q# in Fig[ 1
"i[e[ outwards with respect to the origin q � 9#[ Their choice is consistent with the equalities

"m1
2−q1#0:1 �

0
i
"q1−m1

2#0:1\ "m1−q1#0:1 �
0
i
"q1−m1#0:1\ "08a\b#

and their usage will become apparent in the course of inverting the two!sided Laplace transform[
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Fig[ 1[ The cut complex q!plane for the function b"q# �"m1−q1#0:1[ Similar branch cuts\ emanating from the points
m¦"p# and m−"p#\ are also introduced for\ respectively\ the functions a¦"q\ p# and a−"q\ p#[

Finally\ in view of the de_nitions in "05#\ the following inequalities can be proven

m− ³ m¦ ³ m for hp ×
m1"0¦o#−0

m1"m1−0#
\ "19a#

m− ³ m ³ m¦ for hp ³
m1"0¦o#−0

m1"m1−0#
\ "19b#

whereas Brock "0884# provides the following approximate forms which considerably simplify one!
sided Laplace transform inversions

m¦ 3 0\ m− 3
0

"hp#0:1
for

s
h

ð 0\ "10a#

m¦ 3 0
0¦o

hp 1
0:1

\ m− 3
0

"0¦o#0:1
for

s
h

Ł 0[ "10b#

Furthermore\ it turns out that "19a# and "10a# hold true only during a very small initial time!
interval of the process which for most materials is t ³ O"09−03 s#[ In the present study\ however\
information is needed generally for longer times so we shall focus interest only on the case "19b#
and employ "10b# appropriately[ Since "10b# was obtained by considering s :"0:p# and expanding
in series\ any case "s:h# − 099 leads to a reasonable approximation for m¦ and m−[

Now\ transformation according to "00a# and "01a# of the continuity:discontinuity conditions
"6# ðwith `P"t# � `S"t# � `Q"t# � d"t#Ł and the boundary conditions "7# along with the general
transformed solutions "02# and "03# leads to a linear algebraic system of nine equations in the nine
unknown X0\ X1\ [ [ [ \ X8[ Obviously\ this system has to be solved in an exact manner "i[e[ not
numerically#[ Solution by hand via Gauss elimination proved rather tough\ whereas use of some
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advanced and popular symbolic!manipulations programs proved ine.cient[ However\ the solution
was provided by the more primitive symbolic!algebra program DERIVE through successive
substitutions[ The rather lengthy expressions for X0\ X1\ [ [ [ \ X8 along with the original system are
given in Appendix A[

Having available the solution "X0\ X1\ [ [ [ \ X8# and therefore\ by "02# and "03#\ the general
expressions for the double transformed temperature\ displacement and stresses allows determining
the _eld quantities at any point of the original space and at any time through successive inversions
of the type "01b# and "00b#[ Notice also that if a general dependence from time of the loading
functions is to be considered ði[e[ arbitrary but Laplace transformable functions `Q"t#\ `P"t# and
`S"t# instead of d"t#Ł\ then the quantities Q\ P and S in eqns "A1# of Appendix A should be replaced
by\ respectively\ "Q:V0# = GQ"p#\ "P:V0# = GP"p# and "S:V0# = GS"p#\ where Gj"p# " j � Q\ P\ S# denote
the one!sided Laplace transforms of the functions `j"s:V0 0 t#[

In principle\ the two!sided Laplace!transform inversion "01b# can be accomplished in an exact
fashion by deforming the Bromwich path "−i�\ i�# in the q!plane and employing standard results
of complex!variable theory[ In this way\ the one!sided Laplace transformed expressions of interest
appear in the form of integrals with semi!in_nite integration intervals because of the involvement
of branch cuts of the type shown in Fig[ 1[ Then\ the one!sided Laplace!transform inversion "00b#
may be obtained approximately either by asymptotic considerations and use of an argument of
the CagniardÐde Hoop type "Cagniard\ 0828^ de Hoop\ 0859# or by a numerical technique[ In the
present study\ both approaches were utilized with their choice depending upon the time interval
of interest[

In what follows\ we focus attention on the normal displacement at the surface uy"x\ y � −H\ t#
and present details for the inversions[

3[ Surface displacement due to a heat source

The double transformed displacement U�y"q\ y � −H\ p# for Q � 9\ P � 9 and S � 9 is given in
Appendix B[ Results\ however\ will be presented here for the case Q � 9\ P � S � 9\ i[e[ for a
buried heat source only[ The respective double transformed expression is written as

U�y"q\ y � −H\ p# �
QkV0

p1

m1−1q1

D"q\ p#
ð"m1

¦−q1#0:1 e−a−Hp−"m1
−−q1#0:1 e−a¦HpŁ\ "11#

where

D"q\ p# 0 D � a−M−R¦−a¦M¦R−\ "12#

with

R¦"q\ p# 0 R¦ � 3q1a¦b¦T1\ R−"q\ p# 0 R− � 3q1a−b¦T1\ "13a\b#

being the thermoelastic counterparts of the classical "i[e[ non!thermal purely elastic# transformed
Rayleigh function de_ned "see e[g[ Achenbach "0862## as R"q# � 3q1"0−q1#0:1b¦T1\ where T is
given in "07c#[ Moreover\ the function "D:a¦# exhibits the zeroes q � 2qR which correspond to
thermoelastic Rayleigh wavefronts propagating along the traction!free surface of the half!plane
"Brock\ 0884#[ The roots of "D:a¦# depend upon p and the thermoelastic Rayleigh waves are thus
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dispersive "as opposed to the elastic Rayleigh waves# having a propagation velocity VR"t# � V0:qR[
The latter\ however\ varies in practice only slightly with time "Georgiadis et al[\ 0886#[ A closed!
form expression for the root qR is provided by Brock "0884# as

qR"p# �
m1 ðA¦"m−:m¦#BŁ0:1

Cð1"m1−0#Ł0:1
\ "14#

where

A �
M¦

M¦−M−

\ B � −
M−

M¦−M−

\ "15a\b#

C � exp $
0
p g

m

m−

arctan 0
a−

a¦ 0
M−

M¦

−a¦

3v1b

T1B 11
dv

v

¦
0
p g

m¦

m

arctan 0
a−

a¦ 0
M¦

M−

¦a−

3v1b

T1A1
−0

1
dv

v %\ "16#

with

a− �"v1−m1
−#0:1\ b �"v1−m1#0:1\ "17a\b#

and qR being such that the inequality m ³ qR ³ m¦ always holds ðof course\ within the time interval
implied by "19b#Ł[

Now\ according to the inversion formula in "01b#\ eqn "11# yields

Uy"x\ y � −H\ p# �
QkV0

1pip
"I0−I1#\ "18#

where I0 and I1 are the following complex integrals

I0 � g
i�

−i�

a¦T e−a−Hp

D
epqx dq\ "29a#

I1 � g
i�

−i�

a−T e−a¦Hp

D
epqx dq[ "29b#

Further\ the evaluation of these integrals can be e}ected by using contour integration\ Cauchy|s
integral theorem and Jordan|s lemma "see e[g[ van der Pol and Bremmer\ 0849#[ We _rst alter the
"−i�\ i�#!path\ in the way shown in Fig[ 2\ so as to include two large quarter!circular paths at
in_nity in the left half!plane Re"q# ³ 9\ for the case x − 9 ðthe other possibility x ¾ 9 is treated by
considering similar paths in the right half!plane Re"q# × 9Ł\ and also branch!line paths along
"−�\ −m−#[ Then we proceed to the following considerations] "0# we take into account the
behavior of the integrands along the branch cuts\ "1# we employ Jordan|s lemma for the quarter!
circular paths at in_nity ðnotice that both integrands in "29# behave like e−Hp=q= as =q= : � since
a¦\ a− : −iq\ T : −1q1 and D : i1"m1−0#"m1

−−m1
¦#q2 as =q= : �Ł\ "2# we employ the fact that

as q approaches the negative ðpositiveŁ real axis of the q!plane in the case x − 9ðx ¾ 9Ł it is valid
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Fig[ 2[ Contour integration for evaluation of the integrals I0 and I1 in eqns "29#[

that q : −"s:x# ðof course\ this constitutes a basic argument in the Cagniard "0828#Ðde Hoop
"0859# techniqueŁ[ Finally\ we note that in "20# below the contribution from the pole at −qR is not
included[ It can be easily seen that this contribution provides a term in the form of a delta Dirac\
d"qRx−v\ t#\ in the physical time:space domain[

The previous considerations allows us to write

Uy"x\ y �−H\ p#

�
QkV0

ppx 6g
mx

m−x

"ðsin"=a− = = Hp# = P¦cos"=a− = = Hp# = FŁ = =a¦ =¦P = =a− = = e−=a¦ ==Hp# = T

P1¦F1
= e−ps ds

¦g
m¦x

mx

"ðsin"=a− = = Hp# = K¦cos"=a− = = Hp# = LŁ = =a¦ =¦K = =a− = = e−=a¦ ==Hp# = T

K1¦L1
= e−ps ds

−g
�

m¦x

ðsin"=a¦ = = Hp# ==a− =−sin"=a− = = Hp# = =a¦ =Ł = T
C

= e−ps ds7\ "20#

where

T � m1−1"s:x#1\ "21a#

P � −=a¦ = = M¦T1\ "21b#

F � 3 = =a¦ = = =a− = = =b= ="s:x#1"M−−M¦#¦=a− = = M−T1\ "21c#

K � −3 = =a¦ = = =a− = = =b= ="s:x#1"M−−M¦#−=a¦ = = M¦T1\ "21d#

L � =a− = = M−T1\ "21e#
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C � =a− = = ð−3 = =a¦ = = =b= ="s:x#1 ="M−−M¦#¦M−T1Ł−=a¦ = = M¦T1\ "21f#

with

=a¦ = �"=m1
¦−"s:x#1 =#0:1\ =a− = �"=m1

−−"s:x#1 =#0:1\ =b= �"=m1−"s:x#1 =#0:1\ "22a\b\c#

and with "m¦\ m−# and "M¦\ M−# being given in "05# and "06#\ respectively[
Notice in "20# that the second integral is to be interpreted as a Cauchy principal!value integral

because of the pole at s � qRx[ This observation leads us to conclude that thermoelastic Rayleigh
waves will appear at the surface y � −H upon the arrival of which the vertical displacement
will become unbounded[ Further\ this argument can be supported by the following asymptotic
considerations\ which allow for an approximation of the vertical displacement in the original
time:space domain\ uy"x\ y � −H\ t#\ valid for long times[ For short times\ we perform a numerical
one!sided Laplace!transform inversion by following the Stehfest "0869# technique[

We start with the asymptotic approach and consider the case when s 0 V0t is large with respect
to H "s × 099H\ say#[ Then we may take the approximate forms in "10b# with p :"0:s#[ These
permit writing the following expression for the one!sided Laplace transformed vertical!
displacement at the surface

Uy"x\ y � −H\ p# �
QkV0

p g
�

m¹ −x

G"s\ x# = e−ps ds\ "23#

where

G"s\ x# �
sT

x"PÞ1¦FÞ1#
ðsin"=a¹− = ="H:s## = =a¹¦ = = PÞ

¦cos"=a¹− = ="H:s## = =a¹¦ = = FÞ¦=a¹− = = PÞ = exp"−=a¹¦ = ="H:s##Ł

for m¹ −x ³ s ³ mx\ "24a#

G"s\ x# �
sT

x"KÞ1¦LÞ1#
ðsin"=a¹− = = "H:s## = =a¹¦ = = KÞ

¦cos"=a¹− = = "H:s## = =a¹¦ = = LÞ¦=a¹− = = KÞ = exp"−=a¹¦ = ="H:s##Ł

for mx ³ s ³ m¹ ¦x\ "24b#

G"s\ x# �
sT
xCÞ

ðsin"=a¹− = ="H:s## = =a¹¦ =−sin"=a¹¦ = ="H:s## = =a¹− =Łfor m¹ ¦x ³ s ³ �\ "24c#

with PÞ\ FÞ\ KÞ\ LÞ and CÞ given by "21# but now with "=a¹¦=\ =a¹−=#\ "m¹ ¦\ m¹ −# and "MÞ ¦\ MÞ −# replacing
the respective quantities there without an overbar[ The new quantities with the overbar are de_ned
as

=a¹¦ = �"=m¹ 1
¦−"s:x#1 =#0:1\ =a¹− = �"=m¹ 1

−−"s:x#1 =#0:1\ "25a\b#

m¹ ¦ � $
"0¦o#s

h %
0:1

\ m¹ − �
0

"0¦o#0:1
\ "26a\b#
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MÞ ¦ � m¹ 1
¦−0\ MÞ − � m¹ 1

−−0[ "27a\b#

Now\ eqn "23# has the form of a recognizable direct one!sided Laplace transform\ so the inversion
is obtained immediately as

uy"x\ y � −H\ t 0 s:V0# �
QkV0

p
= G"s\ x# = U"s−m¹ −x#\ "28#

where one may observe that proceeding to the _nal step of the CagniardÐde Hoop technique ði[e[
the one!sided Laplace!transform inversion by inspection which allows getting "28# from "23#Ł was
made possible in the present thermoelastic problem only by the use of asymptotic arguments[ This\
of course\ restricts the validity of the present solution in eqn "28# only for long times[

A graph of the function G"s\ x# � uy"x\ y � −H\ t 0 s:V0# ="p:QkV0#\ i[e[ the normalized vertical
surface displacement\ is presented in Fig[ 3[ This graph was obtained under the restriction
"s:H# − 099 and for a material with Poisson|s ratio n � 9[19 "a value which yields
m 0 V0:V1 � 0[521882#\ coupling constant o � 9[90 and thermoelastic characteristic length
h � 09−09 m[ Accordingly\ in the pure elastic "non!thermal# case\ the velocity of Rayleigh waves

Fig[ 3[ Variation of the normalized vertical surface displacement G\ as de_ned in eqn "24b#\ with the normalized time
"s � V0t#:H for H � 099 m\ x � 099H\ n � 9[19\ o � 9[90 and h � 09−09 m[
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was found to be "VR:V1# � 9[80 from Table 6[4[0 of Eringen and Suhubi "0864# and\ thus\
qR 0 V0:VR � 0[68[ It is therefore anticipated that the critical time at which thermoelastic Rayleigh
disturbances reach the observation point at the surface will be close to the value "s:x# � 0[68[ This
behavior is indeed observed in Fig[ 3\ where the case H � 099 m\ x � 099H and mx ³ s ³ m¹ ¦x is
considered "this case\ for instance\ could be useful in modeling sub!surface nuclear explosions#[

The physical reason for the generation of the strong surface motion "Rayleigh disturbance#
observed in the graph of Fig[ 3 is the incidence of cylindrical thermoelastic disturbances\ emanating
from the source point "x � 9\ y � 9#\ upon the half!plane surface which is insulated and stress!
free[ A physically analogous mechanism that generates Rayleigh waves is the incidence of a plane
pulse upon the curved stress!free surface of a cavity in an elastic medium "Miklowitz\ 0853^
Norwood and Miklowitz\ 0856#[ As pointed out in the latter studies\ this situation is tantamount
to a sudden application of the surface of a concentrated loading[ Therefore\ based on the classical
Lamb|s "0893# analysis "see also Achenbach\ 0862^ Eringen and Suhubi\ 0864^ Miklowitz\ 0867#
one should expect the generation of strong Rayleigh!wave motions along the surface[ Finally\ it
should also be noted that analogous Rayleigh disturbances appear in Garvin|s "0845# dilatational
source problem for large time[

Next\ we focus attention to a numerical approach for obtaining results for the vertical surface
displacement[ More speci_cally\ we employ the Stehfest "0869# algorithm to perform the one!sided
Laplace!transform inversion "00b# of the exact Uy"x\ y � −H\ p#!expression in eqn "20#[ This
approximate technique\ which is particularly suitable when the variable p is taken to be real\ was
recommended by the well!known survey study on Laplace!transform inversion techniques of
Davies and Martin "0868# and has extensively been utilized in transient crack and stress!
concentration problems "see e[g[ Ang\ 0877^ Rajapakse and Gross\ 0884^ Georgiadis et al[\ 0886#[
The approximate inversion is given as

8"s# 3 0
ln 1
s 1 = s

N

n�0

cn = F 0n
ln 1
s 1\ "39#

where

cn �"−0#n¦N:1 s
min"n\N:1#

k�ð"n¦0#:1Ł

kN:1"1k#;
"N:1−k#;k;"k−0#;"n−k#;"1k−n#;

\ "30#

N is even "with N � 07 good convergence was generally found in the present calculations# and ð Ł
in "30# denotes the integer part of a number[ Of course\ with such a numerical technique\ one may
obtain reliable results only for a limited time!interval and not for the whole time domain[ This is
due to the inevitable instability of the _rst!kind integral eqn "00a# for 8"s#[ Nevertheless\ we can
obtain in this manner useful "although approximate# results\ which cannot be revealed by exact
analysis[ The graphs in Figs 4Ð6 depict the variation of the normalized vertical surface displacement
uy"x\ y � −H\ t# ="p:QkV0# with the normalized time "V0:t#:H for H � 099 m\ x � 9[0H\ 0[9H and
09[9H\ and for material constants n � 9[19\ o � 9[90\ and h � 09−09 m[ The graphs in Figs 5 and
6\ i[e[ the graphs which correspond at stations far from the epicenter\ show again the generation
of strong Rayleigh motions at the half!space surface[ On the opposite\ the graph in Fig[ 4 shows
the generation of a complicated pattern of vertical motions near the epicenter[ In addition\ the
graph of Fig[ 7 is presented which was obtained for the case H � 09 m and x � 9[0H\ and for the
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Fig[ 4[ Variation of the normalized vertical surface displacement uy"x\ y � −H\ t#"p:QkV0# with the normalized time
"s � V0t#:H for H � 099 m\ x � 9[0H\ n � 9[19\ o � 9[90 and h � 09−09 m[

same material constants as before[ The history of the normal displacement at the surface resembles
the one in Fig[ 4 "which again corresponds to a station near the epicenter# but here the absolute
values of the normalized displacement are increased by one order of magnitude[ This is not
unexpected because in the case of Fig[ 7 the source was placed closer to the half!space surface as
compared to the case of Fig[ 4[

We close the presentation of results by noticing the behavior of the normal displacement at the
half!space surface near the origin\ limx:9 uy"x\ y � −H\ t#\ when the thermal source is placed at
the surface\ i[e[ for H � 9[ In this case\ eqn "18# becomes

lim
H:9

Uy"x\ y � −H\ p# �
QkV0

1pip g
i�

−i�

"a¦−a−#T
D

epqx dq[ "31#

Then\ an estimate for the displacement near x � 9 is provided by the asymptotic expression of the
integrand in "31# for =q= : � "van der Pol and Bremmer\ 0849#[ By noticing that
"a¦−a−# : "i:1q#"m1

¦−m1
−#\ T : −1q1 and D : i1q2"m1−0#"m1

−−m1
¦# for =q= : �\ we get
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Fig[ 5[ Variation of the normalized vertical surface displacement uy"x\ y � −H\ t#"p:QkV0# with the normalized time
"s � V0t#:H for H � 099 m\ x � 0[9H\ n � 9[19\ o � 9[90 and h � 09−09 m[

lim=q=:� ð"a¦−a−#T:DŁ � ð1"m1−0#q1Ł−0\ which when inverted "Gel|fand and Shilov\ 0853#
provides

lim
H:9
x:9

Uy"x\ y � −H\ p# � −
QkV0

3"m1−0#
=x=\ "32#

and

lim
H:9
x:9

uy"x\ y � −H\ t# �
Qk

3"m1−0#
=x= = d"t#[ "33#

The above result for the normal surface displacement clearly shows a discontinuity generated at
the point of application of the surface thermal source[ It is therefore anticipated that surface waves
"thermoelastic Rayleigh waves# will be generated in this case too as in the case of a buried thermal
source[
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Fig[ 6[ Variation of the normalized vertical surface displacement uy"x\ y � −H\ t#"p:QkV0# with the normalized time
"s � V0t#:H for H � 099 m\ x � 09[9H\ n � 9[19\ o � 9[90 and h � 09−09 m[

4[ Conclusions

The 1!D transient dynamic coupled!thermoelastic problem of a buried thermal:mechanical
source in a half!space medium was treated in the present work[ The problem was intended to
model underground nuclear explosions and impulsively applied heat loading near a boundary\ and
the present solution provides the Green|s function for more general spatial:temporal loadings[ Our
problem can be viewed as a generalization of the classical NakanoÐLapwoodÐGarvin and PekerisÐ
PaytonÐTsai and Ma problems in that of considering additional coupled!thermoelastic constitutive
behavior for the medium and an additional thermal loading[ Representative numerical results were
given for the vertical surfaceÐdisplacement under a thermal loading with a Dirac delta!type
variation in time[ An asymptotic procedure\ which is fairly adequate in some instances\ and a
numerical approach were employed to invert the one!sided "time# Laplace!transformed displace!
ment[ The latter\ however\ had earlier been obtained through exact analysis[ The results clearly
demonstrate the dominance of the thermoelastic Rayleigh wave at large distances from the epi!
center[
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Fig[ 7[ Variation of the normalized vertical surface displacement uy"x\ y � −H\ t#"p:QkV0# with the normalized time
"s � V0t#:H for H � 09 m\ x � 9[0H\ n � 9[19\ o � 9[90 and h � 09−09 m[
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Appendix A

The 8×8 system of Section 2 reads

X0¦X1−
0
q

X2−X3−X4−X5−X6¦
0
q

X7¦
0
q

X8 � 9\ "A0a#

X0¦
a−

a¦

X1¦
q

a¦b
X2¦X3−X4¦

a−

a¦

X5−
a−

a¦

X6¦
q

a¦b
X7−

q
a¦b

X8 � 9\ "A0b#

X0¦
M−

M¦

X1−X3−X4−
M−

M¦

X5−
M−

M¦

X6 � 9 "A0c#
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X0¦X1¦
1q
T

X2−X3−X4−X5−X6−
1q
T

X7−
1q
T

X8 � −
PV0

mT
\ "A0d#

X0¦
a−

a¦

X1−
T

1qa¦b
X2¦X3−X4¦

a−

a¦

X5−
a−

a¦

X6−
T

1qa¦b
X7¦

T
1qa¦b

X8 � −
SV0

1mqa¦

\

"A0e#

X0¦
a−M−

a¦M¦

X1¦X3−X4¦
a−M−

a¦M¦

X5−
a−M−

a¦M¦

X6 � −
QkV0

m1pa¦M¦

\ "A0f#

"pa¦M¦ e−pa¦H#X3−"pa¦M¦ epa¦H#X4¦"pa−M− e−pa−H#X5−"pa−M− epa−H#X6 � 9\

"A0g#

−"1qa¦ e−pa¦H#X3¦"1qa¦ epa¦H#X4−"1qa− e−pa−H#X5

¦"1qa− epa−H#X6¦0
T
b

e−pbH1X7−0
T
b

epbH1X8 � 9\ "A0h#

−"T e−pa¦H#X3−"T epa¦H#X4−"T e−pa−H#X5

−"T epa−H#X6−"1q e−pbH#X7−"1q epbH#X8 � 9\ "A0i#

and it has the solution

X0 �
V0M−T1"Pa−M¦P−SM¦pq¦Qkm# e−"a¦¦a−#Hp

mm1p"M−−M¦#D

−
1V0a−M−qT"Sb¦Pq# e−"a¦¦b#Hp

mm1D

¦
V0"Pa¦M−p−SM−pq¦Qkm#E e−1a¦Hp

1a¦m1mp"M−−M¦#D

−
V0"Pa¦M−p¦SM−pq−Qkm#

1a¦m1mp"M−−M¦#
\ "A1a#

X1 �
V0M¦T1"Pa¦M−p−SM−pq¦Qkm# e−"a¦¦a−#Hp

mm1p"M−−M¦#D

¦
1V0a¦M−qT"Sb¦Pq# e−"a−¦b#Hp

mDm1

−
V0"Pa−M¦p¦Qkm−SM¦pq#F e−1a−Hp

1a−m1mpD"M−−M¦#

¦
V0"Pa−M¦p¦SM¦pq−Qkm#

1a−m1mp"M−−M¦#
\ "A1b#
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X2 �
1V0a¦bqT"Pa−M¦p−SM¦pq¦Qkm# e−"a−¦b#Hp

m1mpD

−
1V0a−bqT"Pa¦M−p−SM−pq¦Qkm# e−"a¦¦b#Hp

m1mpD

−
V0"Sb¦Pq#J e−1bHp

1mDm1
¦

V0"Sb−Pq#

1mm1
\ "A1c#

X3 �
V0"Pa¦M−p−SM−pq¦Qkm#

1m1ma¦p"M−−M¦#
\ "A1d#

X4 �
V0M−T1"Pa−M¦p−SM¦pq¦Qkm# e−"a¦¦a−#Hp

m1mpD

−
V0M−Tð3a−bqT"Pa¦M−p−SM−pq¦Qkm# e−"a¦¦b#Hp¦p"Sb¦Pq#J e−1bHpŁ e−"a¦−b#Hp

3m1ma¦bpqD"M−−M¦#

−
V0M−T"Sb¦Pq# e−"a¦¦b#Hp

3mm1a¦bq"M−−M¦#
¦

V0"Pa¦M−p−SM−pq¦Qkm# e−1a¦Hp

1m1ma¦p"M−−M¦#
\ "A1e#

X5 � −
V0"Pa−M¦p−SM¦pq¦Qkm#

1m1ma−p"M−−M¦#
\ "A1f#

X6 �
V0M¦T1"Pa¦M−p−SM−pq¦Qkm# e−"a¦¦a−#Hp

m1mpD"M−−M¦#

¦
1V0a¦M¦qT"Sb¦Pq# e−"a−¦b#Hp

mDm1

−
V0"Pa−M¦p−SM¦pq¦Qkm#F e−1a−Hp

1m1ma−pD"M−−M¦#
\ "A1g#

X7 �
V0"Sb¦Pq#

1mm1
\ "A1h#

X8 �
1V0a¦bqT"Pa−M¦p−SM¦pq¦Qkm# e−"a−¦b#Hp

m1mpD

−
1V0a−bqT"Pa¦M−p−SM−pq¦Qkm# e−"a¦¦b#Hp

m1mpD

−
V0"Sb¦Pq#J e−1bHp

1mDm1
\ "A1i#

where
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D 0 D"q\ p# � a− ð3a¦bq1"M−−M¦#¦M−T1Ł−a¦M¦T1\ "A2#

E 0 E"q\ p# � a− ð3a¦bq1"M−−M¦#−M−T1Ł−a¦M¦T1\ "A3#

F 0 F"q\ p# � a− ð3a¦bq1"M−−M¦#¦M−T1Ł¦a¦M¦T1\ "A4#

J 0 J"q\ p# � a− ð3a¦bq1"M−−M¦#−M−T1Ł¦a¦M¦T1[ "A5#

Appendix B

p = U�y"q\ y � −H\ p# � −a¦X3 e−a¦Hp¦a¦X4 ea¦Hp−a−X5 e−a−Hp

¦a−X6 ea−Hp−
q
b

X7 e−bHp¦
q
b

X8 ebHp[ "B0#
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